QUANTITATIVE APTITUDE - QUADRATIC EQUATIONS FOR UPCOMING EXAMINATION
ANSWER
I. 6p2+5p+1=0
I. 3p2+2p-1=0
I. 3p2+15p+18=0
I. p=√4/√9=2/3
Directions (Q. 1-5): For the
two given equations I and II.
Give answer:
a) If p is greater than q.
b) If p is smaller than q.
c) If p is equal to q.
d) If p is either equal to or
greater than q.
e) If p is either equal to or
smaller than q.
1) I. 6p2+5p+1=0
II. 20q2+9q=-1
2) I.
3p2+2p-1=0
II. 2q2+7q+6=0
3) I.
3p2+15p=-18
II. q2+7q+12=0
4) I. p=√4/√9
II. 9q2-12q+4=0
5) I. p2+13p+42=0
II. q2=36
Direction (Q. 6-10) : In the following questions two equations
numbered (I) and (II) are given. You have to solve both the equations and
give answer :
a) If x > y
b) If x ≥ y
c) If x < y
d) If x ≤ y
e) If x = y or the relationship
can't be established.
6). I. x = √1369
II. y = 3 √29791
7). I. 8x - 3y = 31
II. 5x + 4y = 84
8). I. 20x2 - 79x + 77 = 0
II. 4y2 + 9y - 28 = 0
9). I. 6x2 + 29x + 28 = 0
II. 6y2 + 11y + 4 = 0
10). I. x2 + 3x - 54 = 0
II. y2 + 4y - 77 = 0
ANSWER
Solution:
1).B)
(3p+1)(2p+1)=0
p=-1/3,-1/2
II. 20q2+9q+1=0
(4q+1)(5q+1)=0
q=-1/4,-1/5
∴p<q
2). A)
(3p-1)(p+1)=0
p=1/3,-1
II. 2q2+7q+6=0
(2q+3)(q+2)=0
q=-3/2,-2
3). D)
(3p+6)(p+3)=0
p=-2,-3
II. q2+7q+12=0
(q+4)(q+3)=0
q=-3,-4
∴p≥q
4). C)
II. 9q2-12q+4=0
(3q-2)2=0
q=2/3
∴p=q
5). E)
p2+13p+42=0
(p+7)(p+6)=0
p=-6,-7
II. q2=36
q=±6
∴p≤q
6). A)
x = √1369 =
37 .................... (I)
y = 3√29791 = 31 ...................
(II)
x > y
7). C)
equn. (I) ×4
+ equn (II) ×3
32 x – 12 y = 124
15 x + 12 y = 252
_____________
47 x = 376
x = 8 and from this y = 11
x < y
8). B)
20 x2 – 35 x – 44 x + 77 = 0
5 x (4 x – 7) – 11 (4 x – 7) =
0
(4x – 7) (5 x – 11) = 0
x = (7/4), (11/5)
4 y2 + 16 y – 7 y – 28 = 0
4 y (y + 4) – 7 (y + 4) = 0
(4 y – 7) (y + 4) = 0
y = – 4, (7/4)
x ≥ y
x ≥ y
9). D)
6 x2 + 8 x + 21 x + 28 = 0
2 x (3 x + 4) + 7 (3x + 4) = 0
(3x + 4) (2 x + 7) = 0
x = (-4/3), (-7/2)
6 y2 + 3 y + 8 y + 4 = 0
3 y (2 y + 1) + 4 (2 y + 1) = 0
(3 y + 4) (2 y + 1) = 0
y = (-4/3), (-1/2)
x ≤ y
10). E)
x2 + 9 x – 6 x - 54 = 0
x (x + 9) –6 ( x + 9) = 0
x = 6, –9
y2 + 11 y – 7 y – 77 = 0
y (y + 11) – 7 (y + 11) = 0
(y – 7) (y + 11) = 0
y = 7, –11
i.e. No relation between x
& y
No comments:
Post a Comment