Saturday, 21 January 2017

QUANTITATIVE APTITUDE - QUADRATIC EQUATIONS  FOR UPCOMING EXAMINATION 




Directions (Q. 1-5): For the two given equations I and II.
Give answer:
a)   If p is greater than q.
b)   If p is smaller than q.
c)   If p is equal to q.
d)   If p is either equal to or greater than q.
e)   If p is either equal to or smaller than q.
1) I. 6p2+5p+1=0
II. 20q2+9q=-1

2)  I. 3p2+2p-1=0
II. 2q2+7q+6=0

3)  I. 3p2+15p=-18
II. q2+7q+12=0


4) I. p=√4/√9
II. 9q2-12q+4=0


5) I. p2+13p+42=0
II. q2=36


Direction (Q. 6-10) : In the following questions two equations numbered (I) and (II) are given.  You have to solve both the equations and give answer :
a)   If x > y
b)   If x ≥ y
c)   If x < y
d)   If x ≤ y
e)   If x = y or the relationship can't be established.

6). I.  x = √1369
II. y = 3 √29791


7). I.  8x - 3y = 31
II.  5x + 4y = 84


8). I.  20x2 - 79x + 77 = 0
II. 4y2 + 9y - 28 = 0


9). I.  6x2 + 29x + 28 = 0
II. 6y2 + 11y + 4 = 0


10). I. x2 + 3x - 54 = 0
II.  y2  + 4y - 77 = 0




ANSWER 

Solution:

1).B)
I. 6p2+5p+1=0
(3p+1)(2p+1)=0 
p=-1/3,-1/2 
II. 20q2+9q+1=0
(4q+1)(5q+1)=0
q=-1/4,-1/5
∴p<q

2). A)
I. 3p2+2p-1=0
(3p-1)(p+1)=0
p=1/3,-1 
II. 2q2+7q+6=0
(2q+3)(q+2)=0
q=-3/2,-2


3). D)
I. 3p2+15p+18=0
(3p+6)(p+3)=0
p=-2,-3
II. q2+7q+12=0
(q+4)(q+3)=0
q=-3,-4
∴p≥q


4). C)
I. p=√4/√9=2/3
II. 9q2-12q+4=0
(3q-2)2=0
q=2/3
∴p=q


5). E)
p2+13p+42=0
(p+7)(p+6)=0
p=-6,-7
II. q2=36
q=±6
∴p≤q


6). A)
 x =  √1369  = 37 .................... (I)
y = 3√29791 = 31 ................... (II)
x > y


7). C)
  equn. (I)  ×4 +  equn (II) ×3
32 x – 12 y = 124
15 x + 12 y = 252
_____________
 47 x           =    376
x = 8 and from this y = 11
x < y


8). B)
20 x2 – 35 x – 44 x + 77 = 0
5 x (4 x – 7) – 11 (4 x – 7) = 0
(4x – 7) (5 x – 11) = 0
x = (7/4), (11/5)
4 y2  + 16 y – 7 y – 28 = 0
4 y (y + 4) – 7 (y + 4) = 0
(4 y – 7) (y + 4) = 0
y = – 4, (7/4)
x ≥ y


9). D)
6 x2  + 8 x + 21 x + 28 = 0
2 x (3 x + 4) + 7 (3x + 4) = 0
(3x + 4) (2 x + 7) = 0
x = (-4/3), (-7/2)
6 y2 + 3 y + 8 y + 4 = 0
3 y (2 y + 1) + 4 (2 y + 1) = 0
(3 y + 4) (2 y + 1) = 0
y = (-4/3), (-1/2)
x  ≤ y


10). E)
 x2  + 9 x – 6 x - 54 = 0
x (x + 9) –6 ( x + 9) = 0
x = 6, –9
y2  + 11 y – 7 y – 77 = 0
y (y + 11) – 7 (y + 11) = 0
(y – 7) (y + 11) = 0
y = 7, –11
i.e. No relation between x & y


No comments:

Post a Comment

Printfriendly