Monday, 16 January 2017

QUANTITATIVE APTITUDE - FOR UPCOMING EXAMINATION



Direction (Q. 1-5): What value should come in the place of question mark (?) in the following number series?

1). 28, 42, 84, 210, 630, ?
a)    2675
b)    2515
c)    2445
d)    2375
e)    2205
2). 13, 15, 22, 50, 113, ?
a)    239
b)    272
c)    287
d)    296
e)    306
3). 8, 17, 38, 85, 186, ?
a)    318
b)    354
c)    397
d)    408
e)    427
4). 5042, 5187, 5334, 5483, 5634, ?
a)    5716
b)    5748
c)    5787
d)    5793
e)    None of these
5). 3, 9, 17, 27, 39, 53, ?
a)    64
b)    69
c)    74
d)    78
e)    81


Direction (Q. 6-10) : In the following questions two equations numbered (I) and (II) are given. You have to solve both the equations and give answer :

a)    If x > y
b)    If x ≥ y
c)    If x < y
d)    If x ≤ y
e)    If x = y or the relationship can't be established.

6). I. 14x2 + 17x - 6 = 0
II. 6y2 - 13y + 5 = 0
7). I. x = √7
II.6y2 - 7y - 20 = 0
8). I. 3x2 + 8x - 35 = 0
II. y2 - 2y - 48 = 0
9). I. x2 - 23x + 132 = 0
II. y = 3√1331
10). I. 7x - 5y = 64
II. 4x + 3y = 19



SOLUTION

1).E) Series is × 1.5, ×2, ×2.5, ×3, ×3.5
2). A) Series is + 13 +1, +23 -1, +33 +1, 43-1
3). C) Series is ×2+12 , ×2+22 , ×2+32 , ×2+42
4).C) Series is (71)2 +1, (72)2 +3, (73)2 +5
5).B) Series is 1× 2 + 1, 2 × 3 + 3, 3 × 4 + 5, 4 × 5 + 7, 5 × 6 + 9


6). C)  14 x2 + 17 x – 6 = 0
14 x2 + 21 x – 4 x – 6 = 0
7 x (2 x + 3) – 2 (2 x + 3) = 0
(2 x + 3) (7 x – 2) = 0
x = -(3/2), 2/7
6 y2 – 3y – 10 y + 5 = 0
3 y (2 y –1) – 5 (2 y –1) = 0
(3 y – 5) (2 y – 1) = 0
y = 5/3, 1/2
Hence, x < y


7). A)  x = √7 = 2.645
6 y2  –15 y + 8 y –20 = 0
3y (2y – 5) + 4 (2 y – 5) = 0
(3 y + 4) (2 y – 5) = 0
y = - (4/3), 5/2
 x > y


8).E)  3x2 + 15 - 7x - 35 = 0
3x (x + 5) - 7 (x + 5) = 0
(3x - 7) ( x + 5) = 0
x = –5, 7/3
y2 – 8 y + 6 y – 48 = 0
y (y –8) + 6 (y –8) = 0
(y + 6) (y –8) = 0
y = – 6 , 8
No relation between x & y


9). B)  x2 - 23x + 132 = 0    y = 3√1331
 x2 -12x - 11x + 132 = 0      y = 11
 x (x - 12) – 11 (x - 12) = 0
(x –11) (x – 12) = 0
 x = 11, 12   x ≥ y


10).A)  equn. (I) × 3 + equn. (II) ×5
(21x – 15y = 192) + (20x +15y=95)
41x = 287
x =7 and y = -3

x > y 

No comments:

Post a Comment

Printfriendly