Monday, 8 May 2017

Quantitative Aptitude: Quadratic Equations 




Directions: In the following questions, two equations numbered are given in variables x and y. You have to solve both the equations and find out the relationship between x and y. Then give answer accordingly-
  1. I. 3x2 – 25x + 52 = 0,
    II. 3y2 – 16y + 16 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
  2. I. 3x2 – 8x – 16 = 0,
    II. 2y2 – 5y – 12 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
  3. I. 3x2 + 22x + 24 = 0,
    II. 2y2 + 7y – 4 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
  4. I. 2x2 – 9x + 4 = 0,
    II. 2y2 – 17y + 36 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
  5. I. 3x2 + 7x – 6 = 0,
    II. 3y2 – 19y + 20 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
  6. I. 3x2 – 4x – 4 = 0,
    II. 3y2 + 16y + 20 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
  7. I. 7x2 + 19x – 6 = 0,
    II. 2y2 + 13y + 21 = 0
    A) x > y
    B) x < y
    C) x ≥ y
    D) x ≤ y
    E) x = y or relationship cannot be determined
  8. I. x2 + (4 + √2)x + 4√2 = 0
    II. 3y2 – (1 + 3√3)y + √3 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
  9. I. 3x2 + (3 + 2√2)x + 2√2 = 0
    II. 5y2 + (2 + 5√2)y + 2√2 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
  10. I. 4x2 – 12x + 5 = 0,
    II. 2y2 + 3y – 20 = 0
    A) x > y
    B) x < y
    C) x ≥ y
    D) x ≤ y
    E) x = y or relation cannot be established

SOLUTION 

1.      Option C
Solution: 

3x
2 – 25x + 52 = 0
3x
2 – 12x – 13x + 52 = 0
Gives x = 4, 13/3
3y
2 – 16y + 16 = 0
3y
2 – 14y – 4y + 16 = 0
Gives y = 4, 4/3
2.      Option E
Solution: 

3x
2 – 8x – 16 = 0
3x
2 – 12x + 4x – 16 = 0
Gives x = -4/3, 4
2y
2 – 5y – 12 = 0
2y
2 – 8y + 3y – 12 = 0
Gives y = -3/2, 4
3.      Option E
Solution: 

3x
2 + 22 x + 24 = 0
3x
2 + 18x + 4x + 24 = 0
So x = -4/3, -6
2y
2 + 7y – 4 = 0
2y
2 + 8y – y – 4 = 0
Gives y = -4, ½
4.      Option D
Solution: 

2x
2 – 9x + 4 = 0
2x
2 – 8x – x + 4 = 0
So x = 4 , 1/2
2y
2 – 17y + 36 = 0
2y
2 – 8y – 9y + 36 = 0
Gives y= 4, 9/2
5.      Option B
Solution: 

Explanation:
3x
2 + 7x – 6 = 0
3x
2 + 9x – 2x – 6 = 0
Gives x = -3, 2/3
3y
2 – 19y + 20 = 0
3y
2 – 15y – 4y + 20 = 0
Gives y = 4/3, 5
6.      Option A
Solution: 

3x
2 – 4x – 4 = 0
3x
2 – 6x + 2x – 4 = 0
Gives x = -2/3, 2
3y
2 + 16y + 20 = 0
3y
2 + 6y + 10y + 20 = 0
Gives y = -10/3, -2
7.      Option C
Solution: 

7x
2 + 19x – 6 = 0
7x
2 + 21x – 2x – 6 = 0
Gives x = -3, 2/7
2y
2 + 13y + 21 = 0
2y
2 + 6y + 7y + 21 = 0
So y = -7/2, -3
8.      Option B
Solution: 

x
2 + (4 + √2)x + 4√2 = 0
(x
2 + 4x) + (√2x + 4√2) = 0
x (x + 4) + √2 (x + 4) = 0
So x = -4, -√2 (-1.4)
3y
2 – (1 + 3√3)y + √3 = 0
(3y
2 – y) – (3√3y – √3) = 0
y (3y – 1) – √3 (3y – 1) = 0
So, y = 1/3, √3 (1.7)
9.      Option E
Solution: 

3x
2 + (3 + 2√2)x + 3√2 = 0
(3x
2 + 3x) + (2√2x + 2√2) = 0
3x (x + 1) + 2√2 (x + 1) = 0
So x = -1, -2√2/3
5y
2 + (2 + 5√2)y + 2√2 = 0
(5y
2 + 2y) + (5√2y + 2√2) = 0
y (5y + 2) + √2 (5y + 2) = 0
So, y = -2/5, -√2
10. Option E
Solution: 

4x
2 – 12x + 5 = 0
4x
2 – 2x – 10x + 5 = 0
x = 1/2, 5/2
2y
2 + 3y – 20 = 0
2y
2 + 8y – 5y – 20 = 0
So y = -3, 5/2

No comments:

Post a Comment

Printfriendly